Effect of (-)-Δ°Tetrahydrocannabinol on Nucleoside and Amino Acid Uptake in Reuber-H-35 Hepatoma Cells

HELMUT JERING AND EFRAÍN TORO-GOYCO

Department of Biochemistry and Nutrition, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00936

> (Received May 18, 1978) (Accepted October 24, 1978)

SUMMARY

JERING, HELMUT, & EFRAÍN TORO-GOYCO. (1979) Effect of (-)- Δ^9 tetrahydrocannabinol on nucleoside and amino acid uptake in Reuber-H-35 hepatoma cells. *Mol. Pharmacol.*, **15**, 627-632.

(–)- Δ^9 -tetrahydrocannabinol (Δ^9 THC) was found to be a noncompetitive inhibitor for the uptake of thymidine into TCA soluble material by Reuber H-35 hepatoma cells. It also reduced uptake rates of adenosine, guanosine and cytidine. A 50% inhibition of thymidine uptake was produced with Δ^9 THC concentrations of 70 μ M while cytidine uptake was inhibited to the same extent at 30 μ M Δ^9 THC. The drug had no significant effect on the uptake of uridine, leucine and proline. Intracellular thymidine-containing nucleotide pools, isolated by thin layer chromatography after pulse labeling of the Δ^9 THC treated cells with ³H thymidine, were significantly diminished. Concentrations of 70 μ M Δ^9 THC reduced radioactive dTMP, dTDP and dTTP levels to 50% of those of the control cells. As thymidine kinase activity was not inhibited by Δ^9 THC, it is concluded that Δ^9 THC inhibits thymidine uptake at some step prior to formation of dTMP.

INTRODUCTION

 $\Delta^9 \text{THC}^1$ has been reported to retard tumor growth in mice bearing the Lewis lung adenocarcinoma (1, 2). Studies using cells in tissue culture showed that this antineoplastic effect might be due to an inhibition of macromolecular synthesis (DNA, RNA and protein) by $\Delta^9 \text{THC}$ (3-6). The mechanism by which $\Delta^9 \text{THC}$ reduces macromolecular synthesis is subject to speculation. In addition different cell lines have been found to respond differently to the drug. In Lewis lung tumor cells $\Delta^9 \text{THC}$ was reported to inhibit only thymidine incorporation (3),

Supported in part by Grant SP 30 CA 16598-02 from the National Cancer Institute and USPHS Grant No. DA-00490.

 1 The abbreviations used are: Δ^9 THC, (-)- Δ^9 tetrahydrocannabinol; HBSS, Hanks balanced salt solution.

while in cultured lymphocytes both uptake and incorporation of thymidine were repressed (5). Stimulated by these findings we were led to study the effect of $\Delta^9 THC$ on nucleoside and amino acid uptake by hepatoma cells. In this communication we show that $\Delta^9 THC$ inhibits the uptake of various nucleosides by Reuber H-35 hepatoma cells. Furthermore, our results indicate that $\Delta^9 THC$ reduces the level of intracellular thymidine nucleotides without affecting thymidine kinase activity.

MATERIALS AND METHODS

Cell culture. H4-II-E-C3 hepatoma cells, derived from Reuber H-35 hepatoma cells (7), were a gift from McArdle Laboratory, Madison, Wisconsin. Cells were grown in 75 cm² Falcon tissue culture flasks in a humidified 5% CO₂, 95% air atmosphere at 37°.

The growth medium was Williams E medium supplemented with 10% heat-inactivated fetal calf serum. Tissue culture reagents were purchased from Flow Laboratories, Rockville, Maryland. No antibiotics were used. Cells were removed for enumeration by trypsinization or with the aid of a rubber policeman and quantitated using a hemocytometer. Cell viability was monitored by trypan blue dye exclusion (0.5% trypan blue).

Materials. Methyl-³H-deoxythymidine, 2, 8-³H-guanosine, 5-³H-uridine were obtained from NEN, 5-³H-L-proline and 4, 5-³H-L-leucine from Schwarz, Mann. Unlabeled nucleotides were purchased from Calbiochem. All other chemicals were reagent grade. Δ⁹THC was kindly provided by Prof. L. S. Harris, Virginia Commonwealth University, Richmond, Virginia. This preparation was found to be homogeneous by thin layer chromatography (8). Precoated silica gel plates from Kontes/Quantum and polyethyleneimine (PEI) cellulose plates from E. M. Laboratories were used for thin layer chromatography.

Uptake studies. 5×10^5 cells in 5 ml medium were seeded in 6 cm plastic dishes (Flow Laboratories) and 16-18 hr were allowed for cell attachment. The cells were pre-incubated with different concentrations of Δ^9 THC (10 μ l in ethanol) as listed in the figure legends. Δ^9 THC concentrations are always referred to as the amount of Δ^9 THC added to the culture dishes. No corrections were made for non-specific absorption to the plastic dishes and for serum binding. The same amount of ethanol was added to control cultures as to those treated with Δ^9 THC. Whenever using concentrations of Δ^9 THC of 50 μ M or higher, cells were exposed to the drug for no longer than 30 min. In dishes containing 40 μ M Δ^9 THC, no cells could be seen detached or floating around even after overnight exposure to the drug. After a 15 min preincubation period, radioactive nucleoside was added to a final concentration as indicated in the figure legends and the dishes were further incubated for varying intervals at 37°. Uptake of radioactive label was terminated by aspirating the medium, rinsing three times with 3 ml ice-cold HBSS and adding 0.5 ml of ice-cold 5% TCA. This manipulation took 15-20 sec. After 30 min at 4°, the TCA supernatant (TCA soluble fraction) was counted in Aquasol (NEN) with a counting efficiency of 45%. The TCA precipitate, which firmly adhered to the dishes, was washed three times with 3 ml ice-cold 5% TCA, two times with absolute methanol, air-dried, solubilized with 0.5 ml of a 1 m methylbenzethonium hydroxide solution in methanol at 65° for 15 min, transferred to scintillation vials with 3 ml of methanol and counted in PPO toluene (4 g PPO/l). Unless specified otherwise, all measurements were made in triplicate sister cultures and the averages were plotted. For measurements of amino acid uptake the medium was replaced with 2.5 ml of HBSS containing 10% fetal calf serum after the 16-18 hr incubation period.

Analysis of nucleotide pools. The TCA supernatant (0.5 ml) was washed three times with water-saturated ether. During this process no radioactivity was lost. A 100 µl aliquot of the ether-washed aqueous phase was spotted together with marker (thymidine, dTMP, dTDP, dTTP) on PEI cellulose thin layer sheets and developed in one dimension essentially as described by Randerath and Randerath (9) (3 min water, 3 min 0.3 M LiCl, 6 min 0.8 M LiCl, and up to 15 cm 1.4 M LiCl). After drying, carrier spots were marked under ultraviolet light, cut out and counted in PPO/toluene (4 g PPO/l) with a counting efficiency of 12%.

Preparation and assay of thymidine kinase. Three 75 cm² flasks, each containing 5×10^6 cells, were incubated with 50 μ M Δ^9 THC, (dissolved in 75% dimethylsulfoxide/water) for 3 hr. The final DMSO content of the incubation mixture was 0.75%. Out of six control flasks, three were incubated with the drug vehicle alone. After trypsinization the cells were washed with medium, followed by lysing buffer (10 mm Tris-HCl pH 7.6, 0.5 m KCl, 20 mm MgCl₂, 1 mm β -mercaptoethanol, 200 μ m adenosine triphosphate). The packed cells were suspended in four volumes of lysing buffer and lysed by quick freezing and thawing (four times). The degree of lysis was monitored through a microscope to ascertain that all cells were completely lysed. The 100,000 g supernatant of the lysed cells was used as

a source of thymidine kinase. The standard assay mixture (0.1 ml) contained 100 mM Tris-HCl pH 7.8, 3.3 mm β -mercaptoethanol, 10 mm ATP, 20 mm MgCl₂, 50 μ m thymidine (specific activity 0.5 Ci/mmole), and between 50 and 150 μ g of protein. Under these conditions, enzyme activity was proportional to the amount of protein added and to the time of incubation (up to 25 min at 37°). The amount of phosphorylated thymidine produced was measured as described by Breitman (10). Protein was determined by the method of Lowry et al. (11).

RESULTS

Uptake studies. The final ethanol concentration in the medium (0.2% or less) did not inhibit cell growth or nucleoside uptake. Radioactive thymidine was taken up at a constant rate into TCA-insoluble material both in the presence or absence of Δ^9 THC (Fig. 1a). In the TCA-soluble fraction radio-

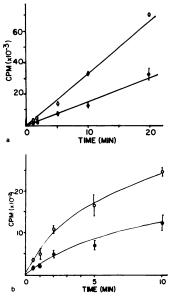


Fig. 1. Time course of thymidine uptake by Reuber H-35 hepatoma cells

Figure 1a represents TCA-insoluble radioactivity, fig. 1b TCA-soluble radioactivity. The final thymidine concentration was 1 μ M (2 μ Ci/ml). \bigcirc — \bigcirc — \bigcirc no Δ^{9} THC present; \bullet — \bullet — \bullet in the presence of 70 μ M Δ^{9} THC. Experimental points indicate plus or minus one standard deviation. For more details refer to section on uptake studies.

activity accumulated and reached a plateau after 20 min. At this time apparently the intracellular nucleotide pools have equilibrated with exogenously added thymidine (Fig. 1b). Both uptake into TCA soluble material and incorporation were inhibited. A lineweaver-Burk plot indicated that Δ^9 THC is a non-competitive inhibitor of thymidine uptake (Fig. 2). The K_m was estimated to be 2.2 μ M which is slightly higher than the values of around 0.5 μ M reported for HeLa (12), 3T3 (13) and Novikoff rat hepatoma cells (14). Nahas et al. (5) have reported a K_m of 0.95 μ M in cultured lymphocytes.

The effect of various Δ^9 THC concentrations on the uptake of several nucleosides and amino acids is seen in Fig. 3. Even at high concentrations (10^{-4} M), Δ^9 THC did not inhibit the uptake of uridine, L-proline, and L-leucine. Uptake of thymidine, adenosine, and guanosine was affected to the same extent by Δ^9 THC with half maximal inhibition at 70 μ M Δ^9 THC, whereas the inhibition of cytidine uptake was more pronounced (see Fig. 3).

Analysis of thymidine nucleotide pools. After pulse labeling with ³H-thymidine the TCA-soluble material was analyzed by thin-layer chromatography. All radioactiv-

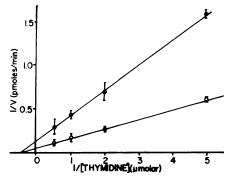


Fig. 2. Lineweaver-Burke plot showing non-competitive inhibition of thymidine uptake into TCA-soluble material by 60 μ M Δ^9 THC

The initial rates were estimated from duplicate 1 min values. The dishes were supplemented with 0.2, 0.5, 1 and $2 \mu \text{M}^3\text{H-thymidine}$ (500 cpm/pmole). Uptake rates were calculated from the cpm per dish. $\bigcirc \bigcirc \bigcirc \bigcirc$ with $\Delta^9\text{THC}$, $\bullet - \bullet \bigcirc$ without $\Delta^9\text{THC}$. Points traced in figure indicate plus or minus one standard deviation.

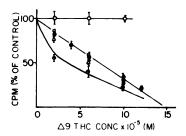


Fig. 3. Inhibition of nucleoside and amino acid uptake by different concentrations of Δ^9THC

The cells were pulse labeled with the radioactive precursor for 30 min, the reaction was stopped as described in the text and the TCA-soluble radioactivity was measured. Results are expressed as % of control experiments, plus or minus one standard deviation, where the Δ^9 THC concentration was zero. The TCAsoluble radioactivity in cpm taken up by control cultures was: uridine 90,000; proline 29,000, leucine 10,200, thymidine 53,600, adenosine 752,000, cytidine 15,100, and guanosine 243,000. Symbols: -O-O- uridine $(.0724 \mu M, 2 \mu Ci/ml)$, L-proline $(1.18 \mu M, 10 \mu Ci/ml)$, and L-leucine (.002 μM, 4 μCi/ml). — thymidine (1 μm, 2 μCi/ml), ————— adenosine (1 μm, 2 μ Ci/ml), Δ — Δ — Δ — guanosine (.336 μ M, 2 μ Ci/ml), -Φ-Φ- cytidine (1 μm, 1 μCi/ml). The concentrations are final concentrations.

ity was recovered in the spots corresponding to thymidine, dTMP, dTDP and dTTP. No counts remained at the origin. Concentrations of 70 μ M Δ^9 THC reduced the amount of label found in dTTP by about 50% (Fig. 4). The radioactivity contained in dTDP and dTMP was suppressed to the same extent (data not shown). Intracellular free thymidine levels were not affected by Δ^9 THC. The small amounts of thymidine found (ca. 100 cpm) did not increase with increasing pulse-lengths (data not shown).

Effect of Δ^9 THC on thymidine kinase activity. Lowered thymidine nucleotide pools might result from inhibition of thymidine kinase by Δ^9 THC. To confirm or discard this possibility the activity of thymidine kinase derived from Reuber hepatoma cells was measured. Neither Δ^9 THC nor the drug vehicle (final DMSO concentration in the lysate, 7.5%) inhibited the enzyme, as seen in Table 1. Preincubation of the cells for 3 hr with 50 μ M Δ^9 THC prior to isolation of the enzyme resulted in no decrease of thymidine kinase activity. The specific activities of thymidine kinase shown in Table 1 were about forty times

higher than those of similar preparations of the enzyme exposed to 100° for 2 min and to enzyme preparations repeatedly exposed to freezing and thawing.

DISCUSSION

Nahas et al. (5) demonstrated that the inhibition of thymidine incorporation by Δ^{9} THC depends on the amount of serum present in the culture medium due to serum-binding of Δ^9 THC. Therefore it is likely that the actual free concentration of Δ^9 THC interacting with the cells is lower than indicated in the text or figures. The finding that Δ^9 THC did not inhibit uridine and leucine uptake (see Fig. 3) disagrees with previous reports. In studies performed with cultured lymphocytes, uridine and leucine uptake into TCA soluble material were inhibited to the same extent as thymidine uptake (5). Obviously, the results obtained from experiments with one cell line cannot necessarily be applied to other cell lines. This view is supported by other data. End et al. (15) showed that Δ^9 THC inhibited uptake of leucine and uridine in mouse neuroblastoma (NB2A) cells in tissue culture, whereas in rat glioma cells (C6) only leucine, but not uridine uptake, was inhibited. In addition, Δ^9 THC has been reported to have no effect on thymidine nucleotide pools in Lewis lung adenocarcinoma cells (3, 16).

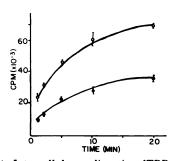


Fig. 4. Intracellular radioactive dTPP levels as a function of time in the absence and presence of $\Delta^9 THC$

After labeling the cells with 1 μ M thymidine (2 μ Ci/ml), the TCA soluble material was separated by thin-layer chromatography and the radioactivity found in the spot corresponding to dTTP was plotted.

OOO: dTTP in the absence of Δ° THC;

OTTP in the presence of 70 μ M Δ° THC. Points in figure plus or minus one standard deviation.

Table 1

Activity of thymidine kinase^a prior to and after exposure to Δ^9THC

 Δ° THC-pretreated cells were incubated for 3 hr with $5 \times 10^{-5} \Delta^{\circ}$ THC prior to isolation of enzyme; control cells received only solvent (75%); and no addition was made to naive control cells. A, no THC added; B, solvent added; C, 320 μ M M Δ° THC.

Thymidine kinase derived from	Α	\mathbf{B}^{b}	C	Statistical differences between		
				A and B	B and C	A and C
Control cells	120 ± 4	118 ± 11	119 ± 1	N.S.	N.S.	N.S.
Naive control cells	119 ± 5	119 ± 1	120 ± 8	N.S.	N.S.	N.S.
Δ ⁹ THC-treated cells	119 ± 10	121 ± 14	119 ± 13	N.S.	N.S.	N.S.

^a Expressed as pmoles phosphorylated thymidine per mg protein and per 20 min incubation at 37°.

 Δ^9 THC inhibited uptake of thymidine into thymidine nucleotides and TCA insoluble material to the same extent, suggesting a common underlying mechanism. As Δ^9 THC decreased the amount of label found in dTTP, it is tempting to speculate that Δ^9 THC might inhibit DNA synthesis (measured as thymidine incorporation) by limiting the supply of dTTP. This view is supported by the finding that in HeLa S3 cells grown in thymidine free medium, exogenously added thymidine was incorporated into DNA almost immediately at full specific activity, blocking any further incorporation of de novo synthesized thymidine (17).

The inability to find any differences in the levels of intracellular pools of free thymidine in control and Δ^9 THC-treated cells can be explained by the loss of free intracellular thymidine by washing the cells to remove extracellular thymidine. Cass and Patterson (12) previously demonstrated that washing removes intracellular thymidine, but not thymidine nucleotides. It is a well known biochemical phenomenon that cells retain intracellular metabolites by phosphorylating them. Since cellular thymidine kinase was not affected by Δ^9 THC, even when the cells had been exposed to Δ^9 THC prior to isolation of the enzyme, we conclude that Δ^9 THC interfered with thymidine uptake in some step before the formation of dTMP. A hypothesis presented here is that membrane associated proteins involved in thymidine transport are inhibited by Δ^9 THC. It has been previously shown that Δ^9 THC does strongly inhibit lysolecithin acyl transferase and (Na⁺ + K+) dependent ATPase, which are membrane associated enzymes (18, 19). Further support for this hypothesis is obtained from the interpretation of the data presented in Fig. 2. The data, obtained using intact cells, may be ascribed to: (a) inhibition of an enzymatic process in the synthesis of nucleotides or (b) to the inhibition of a transport process at the membrane level, since both processes follow saturation kinetics. Having ruled out the first alternative by showing that thymidine kinase is not inhibited by Δ^9 THC, the second alternative remains as a plausible explanation for the decreased uptake of thymidine. Further investigations are in progress in this laboratory in the search for an answer to this question.

ACKNOWLEDGMENTS

We thank Professor L. S. Harris, Department of Pharmacology, Medical College of Virginia for his gift of the Δ^{B} THC, Mrs. Esther Torres for clerical help and Mr. Juan Coloca for the photographic work.

REFERENCES

- Harris, L. S., Munson, A. E., and Friedman, M. A. Retardation of tumor growth by Δ⁹-tetrahydrocannabinol. *Pharmacologist* 16, 259, 1974.
- Munson, A. E., Harris, L. S., and Friedman, M. A. Antineoplastic activity of cannabinoids. J. Natl. Cancer Inst. 55, 597-602, 1975.
- 3. White, A. C., Munson, J. A., Munson, A. E., and

 $[^]b$ Assay mixture contained only solvent (10 μ l 75% DMSO in a final volume of 0.1 ml). The final concentration of DMSO was 7.5%. Notice that in this assay, the DMSO concentration was 7.5% while in the incubation medium of the pretreated cells DMSO concentration was only 0.75% (refer to materials and methods).

In all cases p > 0.5; refer to Snedecor, G. W., Statistical Methods, 5th ed., The Iowa University Press, p. 46.

- Carchman, R. A. Effects of delta-9-tetrahydrocannabinol in Lewis lung adenocarcinoma in tissue culture. J. Natl. Cancer Inst. 56, 655-658, 1976.
- Carchman, R. A., Harris, L. S., and Munson, A. E. The inhibition of DNA synthesis by cannabinoids. Cancer Res. 36, 95-100, 1976.
- Nahas, G. G., Marishima, A., and Desoize, B. Effects of cannabinoids on macromolecular synthesis and replication of cultured lymphocytes. Fed. Proc. 36, 1748-1752, 1977.
- Desoise, B., and Nahas, G. Effect inhibiteur du delta-9-tétrahydrocannabinol sur la synthese des protéines et des acides nucléiques. C. R. Acad. Sci. (Paris) 281, 475-478, 1975.
- Reuber, M. D. A transportable bile-secreting hepatocellular carcinoma in the rat. J. Natl. Cancer Inst. 26, 891-899, 1961.
- Martin, B. R., Dewey, W. L., Harris, L. S., and Beckner, J. S. 3H-delta-9-tetrahydrocannabinol tissue and subcellular distribution in the central nervous system and tissue distribution in peripheral organs of tolerant and nontolerant dogs. J. Pharmacol. Exp. Ther. 196, 128-144, 1976.
- Randerath, K., and Randerath, E. Thin layer separation methods for nucleic acid derivatives, in *Methods in Enzymology*, Academic Press, New York, Vol. 12, 323-347, 1967.
- Breitman, R. T. The feedback inhibition of thymidine kinase. Biochim. et Biophys. Acta. 67, 153-155, 1963.
- Lowry, O. H., Rosebrough, N. H., Farr, A. L., and Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265– 275, 1951.
- 12. Cass, C. E., and Patterson, A. R. P. Inhibition of

- thymidine uptake in asynchronous HeLa cells by nitrobenzylthioinosine. *Exp. Cell Res.* **105**, 427-435, 1977.
- Cunningham, D. D., and Remo, R. A. Specific increase in pyridine deoxynucleoside transport at the time of deoxyribonucleic acid biosynthesis in 3T3 mouse cells. J. Biol. Chem. 248, 6282-6283, 1973.
- Plagemon, P. G., and Erbe, J. The deoxyribonucleotide transport systems of cultured Novikoff rat hepatoma cells. J. Cell Physiol. 83, 337-343, 1974.
- End, D. W., Thoursen, K., Dewey, W. L., and Carchman, R. A. A comparative study of the disposition of (-) delta 9-tetrahydrocannabinol in neuroblastoma and glioma cells in tissue culture: relation to cellular impairment. *Mol. Phar*macol. 13, 864-871, 1977.
- Carchman, R. W., Warner, W., White, A. C., and Harris, L. S. Cannabinoids and neoplastic growth, in Marihuana: chemistry, biochemistry, and cellular effects. G. G. Nahas, ed. Springer, New York, 329-345, 1976.
- Kwebbing, D., and Werner, R. A model for compartmentation of de novo and salvage thymidine nucleotide pools in mammalian cells. *Proc. Natl. Acad. Sci.* 72, 3333-3336, 1975.
- Greenberg, J. H., Saunders, M. E., and Mellors, A. Inhibition of a lymphocyte membrane enzyme by delta 9-tetrahydrocannabinol in vitro. Science 197, 475-477, 1977.
- Toro-Goyco, E., Rodríguez, M. B., and Preston, A. M. On the action of Δ⁹-tetrahydrocannabinol as an inhibitor of sodium and potassium dependent adenosine triphosphatases. *Mol. Pharmacol.* 14, 130-137, 1978.